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A further development of numerical methods for calculating the nonlinear interdependent processes of heat
and mass transfer in capillary-porous materials with account for their stressed-strained state is given.
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Introduction. The methods proposed in [1, 2] for calculating the stressed-strained state of materials in the
process of their drying are based on the assumption that these materials experience small elastic deformations in each
time step. This approach brings about an error in determination of the humidity deformation of a material, and, at a
large shrinkage coefficient, this error can be large. If experimental data on this process were available, the indicated
error could be decreased by the introduction of corresponding corrections, i.e., by fitting the theory to the experiment.
However, reliable experimental data on the stressed-strained state of materials subjected to drying are absent, which
generates a need for the development of a more general method for calculating large deformations and displacements
arising in these materials in the process of their drying without introduction of additional simplifying assumptions. We
propose such a method as well as a method for calculating the nonlinear interconnected equations of heat and mass
transfer in colloidal capillary-porous materials prone to large shrinkages and deformations. The indicated methods were
developed on the basis of the methods proposed in [1, 2], the generalization of which is the aim of the present work.

Mathematical Model. In the case where the processes of heat and mass transfer in a material subjected to
drying proceed at a temperature lower than 100oC, a relative atmospheric humidity lower than 100%, and a rate of
motion of a drying agent smaller than 7 m ⁄ sec, one can restrict oneself to the problem on the moisture stress of the
material without considering the influence of its mechanical motion on the heat and mass transfer in it. We will as-
sume that, under the indicated drying conditions, a body is at mechanical equilibrium at each instant of time, which
allows us to consider the statical problem on its moisture elasticity.

Let us formulate a mathematical model of the processes being investigated, accounting for their geometrical
and physical nonlinearity. The equations of heat and mass transfer are written in the curvilinear coordinates:
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and the equations of motion have the form

σ;j
ij
 = 0 . (3)

To determine the mechanical deformations of a material, it is necessary to know its rheology. If Hooke’s law
applies, we can write
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For a plastic body, the following relations are true:
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An elastoviscous material adheres to the equation
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Equations (1)–(3) and one of the rheological equations (4)–(6) or their combination form the basis for the
mathematical model of the interdependent processes of heat and mass transfer in a material and its stressed-strained
state. Using the above formulas as the base, one can obtain equations of motion in displacements. By way of example
we will derivate such an equation for an elastic body on the assumption that the Lame′ coefficient is constant. Let us
use the following relations:
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Substitution of (7) and (8) into (4) gives the expression
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Substituting, in turn, (9) into (3) and regrouping terms, we obtain
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When passing from the contravariant components to the covariant ones on condition that a covariant derivative of a
scalar is equal to a partial derivative with respect to a coordinate, the following expression is obtained:
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The covariant derivatives of covariant and contravariant vectors have, respectively, the forms
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and the second derivatives used in (10) are determined as
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The divergence of the displacement vector is given by the formula
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Equations (10)–(15) should be supplemented by the relations
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Thus, Eqs. (1), (2), (7), (8), and (10)–(16) form a mathematical model of the interdependent processes of heat
and mass transfer in a material described by Hooke’s law and its stressed-strained state.

Procedure of Numerical Solution of the Interconnected Equations of Heat and Mass Transfer. The prob-
lem on heat and mass transfer in a material will be solved by the finite element method (FEM) described in [3].
Therefore, in what follows, we will use FEM mathematical symbols. With allowance made for the initial geometry of
the material being investigated, the finite element method will be realized in the Cartesian coordinate system, which
suffices to construct the equations of motion and of heat and mass transfer for the problem being solved.

Let us consider the equation of mass transfer
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with the boundary conditions

jsur = ρ0βW (W − Weq) . (17)

For the finite element method to be used, it is necessary to take into account the fact that the heat flows caused by
the temperature and moisture-content gradients are independent and, consequently, the moisture-content increment aris-
ing with time consists of two parts:
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with the boundary conditions (17) and the equation
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with a constant temperature at the boundary. Then the functionals for Eqs. (19) and (20) with the corresponding
boundary conditions will be as follows:
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Let us introduce the designations
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and write the functionals in the matrix form
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The variational formulation of the equation of mass transfer has the form
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Substituting (23) into (22), using relation (18), and performing simple rearrangements, we eventually obtain
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Equation (25) will be solved by the finite-difference method. For this purpose, we change the derivative for
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Since the coefficients aWx, aWy, aWz, and δ are functions of W and T, we will perform an iteration process of
solving the nonlinear equation of mass transfer in each time step. Iterations will be carried out as long as the modulus
of the difference ⏐�Wn� − �Wn−1�⏐ becomes smaller than 10−6.

Let us now consider the heat-conduction equation

672



cρ0 
∂T
∂t

 = 
∂
∂x

 
⎛
⎜
⎝
λx 

∂T
∂x

⎞
⎟
⎠
 + 

∂
∂y

 
⎛
⎜
⎝
λy 

∂T
∂y

⎞
⎟
⎠
 + 

∂
∂z

 
⎛
⎜
⎝
λz 

∂T
∂z

⎞
⎟
⎠
 + εQpρ0 

∂W
∂t

(26)

with the boundary conditions

qsur = α (Tenv − T) − ρ0Qp (1 − ε) βW (W − Weq) . (27)

The functional for problem (26), (27) can be written as

χ = ∫ 
V

1
2

 
⎡
⎢
⎣

⎢
⎢
λx 

⎛
⎜
⎝

∂T
∂x

⎞
⎟
⎠

2

 + λy 
⎛
⎜
⎝

∂T
∂y

⎞
⎟
⎠

2

 + λz 
⎛
⎜
⎝

∂T
∂z

⎞
⎟
⎠

2

 + 2cρ0 
∂T
∂t

 T − 2ρ0Qpε 
∂W
∂t

 T
⎤
⎥
⎦

⎥
⎥
 dV 

+ ∫ 
S

⎡
⎢
⎣

α
2

 (Tenv − T)2 − ρ0Qp (1 − ε) βW (W − Weq) T
⎤
⎥
⎦
 dS . (28)

Introducing the designations

[L] = 
⎡
⎢
⎣

⎢
⎢

λx
0
0

   

0

λy
0

   

0
0

λz

⎤

⎥

⎦

⎥

⎥
 ,   ⎧⎨

⎩
gT

⎫
⎬
⎭

tr
 = 

⎧
⎨
⎩

∂T
∂x

 
∂T
∂y

 
∂T
∂z

⎫
⎬
⎭
 ,   T = [N] ⎧⎨⎩T

⎫
⎬
⎭ ,   

⎧
⎨
⎩
gT

⎫
⎬
⎭
 = [B] ⎧⎨⎩T

⎫
⎬
⎭ , (29)

we write formula (28) in the matrix form

χ = ∫ 
V

1
2

 
⎡
⎢
⎣

⎧
⎨
⎩T

⎫
⎬
⎭

tr
 [B]

tr
 [L] [B] ⎧⎨⎩T

⎫
⎬
⎭ + 2cρ0 [N] ⎧⎨⎩T

⎫
⎬
⎭ [N] 

∂⎧
⎨
⎩T

⎫
⎬
⎭

∂t
 − 2ρ0εQp [N] ⎧⎨⎩T

⎫
⎬
⎭ 
∂W
∂t

⎤
⎥
⎦
 dV + ∫ 

S

α
2

 ⎧⎨⎩T
⎫
⎬
⎭

tr
 [N]

tr
 [N] ⎧⎨⎩T

⎫
⎬
⎭ dS 

− ∫ 
S

αTenv [N] ⎧⎨⎩T
⎫
⎬
⎭ dS + ∫ 

S

α
2

 Tenv
2

dS − ∫ 
S

ρ0 (1 − ε) QpβW (Wsur − Weq) [N] ⎧⎨⎩T
⎫
⎬
⎭ dS .

The derivative of χ with respect to �T� has the form

dχ
d⎧

⎨
⎩T

⎫
⎬
⎭

 = ∫ 
V

[B]
tr
 [L] [B] dV ⎧⎨⎩T

⎫
⎬
⎭ + ∫ 

V

cρ0 [N]
tr
 [N] dV 

∂⎧
⎨
⎩T

⎫
⎬
⎭

∂t
 − ∫ 

V

ρ0εQp [N]
tr
 dV 

∂W
∂t

 + ∫ 
S

α [N]
tr
 [N] dS ⎧⎨⎩T

⎫
⎬
⎭ 

− ∫ 
S

αTenv [N]
tr
 dS − ∫ 

S

ρ0 (1 − ε) QpβW (Wsur − Weq) [N]
tr
 dS = 0 .

Since

[C] = cρ0 ∫ [N]
tr
 [N] dV ,   [K] = ∫ 

V

[B]
tr
 [L] [B] dV + ∫ 

S

α [N]
tr
 [N] dS ,

⎧
⎨
⎩F

⎫
⎬
⎭ = − ∫ 

V

ρ0εQp [N]
tr
 dV 

∂W
∂t

 − ∫ 
S

αTenv [N]
tr
 dS − ∫ 

S

ρ0 (1 − ε) QpβW (Wsur − Weq) [N]
tr
 dS ,

we obtain

[C] 
∂⎧

⎨
⎩T

⎫
⎬
⎭

∂t
 + [K] ⎧⎨⎩T

⎫
⎬
⎭ + ⎧⎨⎩F

⎫
⎬
⎭ = 0 .

(30)

To solve equation (30) by the finite difference method, we change the derivative for the finite difference
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∂⎧
⎨
⎩T

⎫
⎬
⎭

∂t
 = 

1
Δt

 (⎧
⎨
⎩
Tnew

⎫
⎬
⎭
 − ⎧⎨

⎩
Told

⎫
⎬
⎭
) 

and, calculating the vectors �T� and �F� at the middle points of a time interval,

⎧
⎨
⎩
Tm

⎫
⎬
⎭
 = 

1
2

 (⎧
⎨
⎩
Tnew

⎫
⎬
⎭
 + ⎧⎨

⎩
Told

⎫
⎬
⎭
) ,   ⎧⎨

⎩
Fm

⎫
⎬
⎭
 = 

1
2

 (⎧
⎨
⎩
Fnew

⎫
⎬
⎭
 + ⎧⎨

⎩
Fold

⎫
⎬
⎭
) ,

obtain

[GT] ⎧⎨
⎩
Tnew

⎫
⎬
⎭
 = ⎧⎨

⎩
FT

⎫
⎬
⎭
 ,

where the following designations are used:

[GT] = 
1
Δt

 [C] + 
1
2

 [K] ;   ⎧⎨
⎩
FT

⎫
⎬
⎭
 = 

⎛
⎜
⎝

1
Δt

 [C] − 
1
2

 [K]
⎞
⎟
⎠
 ⎧⎨
⎩
Told

⎫
⎬
⎭
 − 

1
2

 (⎧
⎨
⎩
Fnew

⎫
⎬
⎭
 + ⎧⎨

⎩
Fold

⎫
⎬
⎭
) .

Since the coefficients c, λx, λy, λz, and Qp are functions of W and T, the iteration process of solving the non-
linear heat-conduction equation is performed in each time step. Iterations are carried out as long as the difference

⏐�Tn� − �Tn−1�⏐ is smaller than 10−6.
Since the equations of heat and mass transfer (1) and (2) are interconnected, we developed an additional it-

eration procedure in each time step for the purpose of verifying of the influence of the temperature on the distribution
of the moisture content in the material and vice versa. The moisture-content field W is calculated by the foregoing for-
mulas and then, with its use, the temperature field T is determined. Thereafter W and T are determined once again in
the same time interval, which makes it possible to take into account the mutual influence of these fields. Iterations are
carried out as long as ⏐�Wn� − �Wn−1�⏐ and ⏐�Tn� − �Tn−1�⏐ become smaller than 10−6 at a time.

Procedure of Numerical Solution of the Equation of Motion. After the distributions of the temperature and
moisture-content fields have been found, the stresses and deformations corresponding to them were determined. The
main distinguishing feature of the mechanical problem is that the deformation vector is not a linear function of dis-
placements. However, the linear relation between the differentials of these quantities remains true:

d ⎧⎨⎩ε
⎫
⎬
⎭ = [B] d ⎧⎨⎩u

⎫
⎬
⎭ . (31)

In Eq. (31), the matrix [B] is a function of displacements because, as follows from (8), the dependence of the defor-
mation vector �ε� on the displacements is a square function. The following expression can be written:

d ⎧⎨⎩ε
⎫
⎬
⎭ = ([Blin] + [Bnlin]) d ⎧⎨⎩u

⎫
⎬
⎭ .

(32)

Here, [B] = [Blin] + [Bnlin], [Blin] is a matrix accounting for infinitely small displacements, independent of them,
[Bnlin] is a matrix accounting for the nonlinear properties of the deformation tensor, dependent on the displacements.
It follows from formulas (8) and (32) that the matrix [Bnlin] is a linear function of the displacements.

It is known that in the case where expression (8) is among the equations of mechanical motion used in a
mathematical problem, the problem becomes nonlinear. This problem can be solved using iterative calculation methods,
one of which is the Newton method. Let �F� be the vector of the total internal force. The principle of virtual internal
work can be written as

δ ⎧⎨⎩u
⎫
⎬
⎭

tr
 ⎧⎨⎩F

⎫
⎬
⎭ = ∫ 

V

δ ⎧⎨⎩ε
⎫
⎬
⎭

tr
 ⎧⎨⎩σ

⎫
⎬
⎭ dV = 0 . (33)

Using relation (31) and eliminating δ�u�tr from (33), we obtain the following expression for the force:
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⎧
⎨
⎩F

⎫
⎬
⎭ = ∫ 

V

[B]
tr
 ⎧⎨⎩σ

⎫
⎬
⎭ dV = 0 . (34)

The vector �σ� represents the true stresses dependent on the deformations attained. For an elastic material, it has the
form

⎧
⎨
⎩σ

⎫
⎬
⎭ = [D] (⎧

⎨
⎩ε

⎫
⎬
⎭ − ⎧⎨

⎩
ε0

⎫
⎬
⎭
) .

Here, �ε0� is determined as

⎧
⎨
⎩
ε0

⎫
⎬
⎭

tr
 = 

⎧
⎨
⎩

1
2

 (1 + βΔW)2 − 
1
2

        
1
2

 (1 + βΔW)2 − 
1
2

        
1
2

 (1 + βΔW)2 − 
1
2

      0   0   0
⎫
⎬
⎭
 .

According to the Newton method, to find the corrections to the predetermined initial displacements, it is nec-
essary to solve the equation

Δ ⎧⎨⎩u
⎫
⎬
⎭ = [J]

−1
 ⎧⎨⎩F

⎫
⎬
⎭ .

Here, [J] is a Jacobi matrix

[J] = 
⎡
⎢
⎣

∂⎧
⎨
⎩F

⎫
⎬
⎭

∂⎧
⎨
⎩u

⎫
⎬
⎭

⎤
⎥
⎦
 , (35)

that will be determined by differentiation of relation [34] with respect to the variable �u�:

d ⎧⎨⎩F
⎫
⎬
⎭ = ∫ 

V

d [Bnlin]
tr
 ⎧⎨⎩σ

⎫
⎬
⎭ dV + ∫ 

V

([B]
tr
 [D] [B] d ⎧⎨⎩u

⎫
⎬
⎭) dV . (36)

Setting

∫ 
V

d [Bnlin]
tr
 ⎧⎨⎩σ

⎫
⎬
⎭ dV = [Kσ] d ⎧⎨⎩u

⎫
⎬
⎭

and introducing the designation

[Knlin] = ∫ 
V

[B]
tr
 [D] [B] dV , (37)

we write Eq. (36) in the form

d ⎧⎨⎩F
⎫
⎬
⎭ = [Kσ] d ⎧⎨⎩u

⎫
⎬
⎭ + [Knlin] d ⎧⎨⎩u

⎫
⎬
⎭ = [Kt] d ⎧⎨⎩u

⎫
⎬
⎭ . (38)

Here,

[Kt] = [Kσ] + [Knlin] . (39)

When relations (35) and (38) are compared, it is apparent that the Jacobi matrix is a matrix of tangential stiffnesses
and, consequently, the corrections to the initial displacement vector can be determined by the formula

[Kt] Δ ⎧⎨⎩u
⎫
⎬
⎭ = ⎧⎨⎩F

⎫
⎬
⎭ . (40)

The iteration procedure is constructed in the following way:
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1. The fir st approximation of the displacement vector  �u� is determined by solving the linear problem
on the moisture elasticity.

2. Using the value of �u� determined in Par. 1, the internal-force vector �F� is calculated by formula
(34). To determine the matrix [B] used in Eq. (34), according to formula (32), it is necessary to determine the
matrix [Bnlin] given by the expression

[Bnlin] = [A] [G] .

3. The matrix [Kt] is calculated by formulas (37) and (39) with the use of the expression

[Kσ] = ∫ 
V

[G]
tr
 [M] [G] dV . (41)

4. The value of Δ�u� is determined from formula (40).
5. The displacement vector �u� is refined.
6. If the components of the vector �F� are smaller than 10−6, the calculations are stopped. Otherwise,

we pass to Par. 2 and continue the calculations.
To take into account the elastic properties of the material, we will use expression (6) written in the ma-

trix form

⎧
⎨
⎩σ

⎫
⎬
⎭ = [D] ⎧⎨⎩ε

⎫
⎬
⎭ − [D] ⎧⎨

⎩
ε0

⎫
⎬
⎭
 + ⎧⎨⎩r

⎫
⎬
⎭ , (42)

where

r1 = − ∫ 
0

t

Rs (t − τ) 
⎡
⎢
⎣

(2 − ν) E
3 (1 − ν2)

 ε11 (τ) − 
(1 − 2ν) E
3 (1 − ν2)

 ε22 (τ)
⎤
⎥
⎦
 dτ ;

r2 = − ∫ 
0

t

Rs (t − τ) 
⎡
⎢
⎣

(2 − ν) E

3 (1 − ν2)
 ε22 (τ) − 

(1 − 2ν) E

3 (1 − ν2)
 ε11 (τ)

⎤
⎥
⎦
 dτ ;

r3 = − 
E

2 (1 + ν)
 ∫ 
0

t

Rs (t − τ) ε21 (τ) dτ .

The use of (42) will change the calculations of only the terms accounting for stresses, namely, the ma-
trix [M], used for calculating the matrix [Kσ], and the load vector �F� determined by formula (34).

Once the stressed-strained state of the material has been determined, we pass to a new time layer and
perform the calculation over again beginning with the determination of the temperature and moisture-content
fields with consideration for the strained state of the material in the new position.

For the method proposed to be used for numerical calculations, it is necessary to specify the structure
of elements. Tetrahedral elements are used in the three-dimensional case, and triangular elements are used in
the two-dimensional case, which allows us to write all the above-indicated matrices in the explicit form and ex-
actly calculate the spatial integrals. Since the presentation of these matrices for the three-dimensional and two-
dimensional cases is cumbersome and these matrices are given in [3], they are not presented here. In particular,
the form of the matrices [A], [G], and [M] used in the present work exactly correspond to that of [3].

Characteristics of a Material. The mathematical model proposed can be used for investigating the heat
and mass transfer in colloidal capillary-porous materials with account for their stressed-strained state. This
model allows one to consider the interdependence of the indicated processes, their physical nonlinearity, ex-
plained by the dependence of the properties of these materials on their moisture content and temperature, and
the geometrical nonlinearity caused by the large deformations of the materials in the case of their shrinkage.
For the indicated model to be used for calculating the parameters of a material, it is necessary to know the
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properties of this material. Let us consider wood, which is classified as capillary-porous materials. Wood is most com-
monly considered as an orthotropic body, the rheological and heat-and-mass-transfer characteristics of which represent
tensor quantities. The orthotropic properties of the heat-and-mass-transfer processes are defined by the matrices in for-
mulas (21) and (29). We dwell on the mechanical orthotropic properties of wood. The elastic characteristics of wood
are defined by the matrix

[D] = 

⎡

⎢

⎣

⎢
⎢
⎢

⎢
⎢
⎢

d11
d12
d13
0
0
0

   

d12
d22
d23
0
0
0

   

d13
d23
d33
0
0
0

   

0
0
0

d44
0
0

   

0
0
0
0

d55
0

   

0
0
0
0
0

d66

⎤

⎥

⎦

⎥
⎥
⎥

⎥
⎥
⎥

 , (43)

where d11 = 
1
J

(1 − ν23ν32)E1, d22 = 
1
J

(1 − ν13ν31)E2, d33 = 
1
J

(1 − ν12ν21)E3, d12 = 
1
J

(ν21 + ν23ν31)E1, d13 =

1
J

(ν31 + ν21ν32)E1, d23 = 
1
J

(ν32 + ν12ν31)E2, d44 = G12, d55 = G13, d66 = G23, and J = 1 − 2ν12ν23ν31 − ν13ν31 −

 ν12ν21 − ν23ν32. Of the twelve elastic quantities, only nine quantities are independent because, owing to the symmetry

of matrix (43), the following equalities are always fulfilled:

E1ν21 = E2ν12 ,   E2ν32 = E3ν23 ,   E3ν13 = E1ν31 . (44)

For the two-dimensional stressed state, we have

[D] = 
⎡
⎢
⎣

⎢
⎢

d11
d12
0

   
d12
d22
0

   
0
0

d33

⎤
⎥
⎦

⎥
⎥
 , (45)

where

d11 = 
E1

J
 
(1 − ν12ν21)(1 − ν23ν32) − (ν31 + ν21ν32)(ν13 + ν12ν23)

1 − ν12ν21
;

d22 = 
E2

J
 
(1 − ν12ν21)(1 − ν13ν31) −(ν32 + ν12ν31)(ν23 + ν21ν13)

1 − ν12ν21
 ;

 d12 = 
E1

J
 
(1 − ν12ν21)(ν21 + ν23ν31) − (ν31 + ν21ν32)(ν23 + ν21ν13)

1 − ν12ν21
; d33 = G12.

To determine the characteristic matrix [D] of the plane stressed state, it is necessary to know the following
seven quantities: E1, E2, E3, ν12, ν13, ν23, G12. In [4–7], a complete set of anisotropic characteristics of wood has
been obtained. The dependence of the rheological properties of wood on its moisture content and temperature was in-
vestigated in [8–10], where the corresponding data are presented. The elastoviscous properties of wood were deter-
mined in [11, 12].

The density of wood depends critically on the content of moisture in it. The moisture content of different
kinds of wood can be found in [6, 13, 14]. The heat capacity of wood was discussed in [6, 9, 13]. Taking into ac-
count the results obtained in these works, we constructed the dependences of this quantity on the temperature and
moisture content. As already noted, the heat conductivity of wood depends substantially on the direction of heat trans-
fer in it. In the literature [6, 9, 13, 14] there are data on the heat conductivity of wood in the mutually perpendicular
radial, tangential, and longitudinal directions as well as the functional dependences of the heat conductivity on the tem-
perature and the moisture content. The diffusivity of wood as well as its heat-conductivity coefficient are dependent on
the spatial direction of heat flow in it. Its description can be found in [6, 9, 15, 16]. According to [16], the diffusion
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differs from the heat conduction in that the influence of the humidity on the diffusivity can be disregarded as com-
pared to the temperature effect. The temperature-gradient coefficient is calculated by its functional dependence on the
temperature and the moisture content, proposed in [9]; this dependence agrees well with the results obtained in [16, 17].
The phase-transition criterion ε characterizing the amount of moisture evaporating inside the material was determined
in [17–20]. In accordance with the results of the indicated works, this criterion is taken to be a constant equal to 0.15.
To perform numerical calculations, it is necessary to know the dependence of the equilibrium moisture content on the
temperature and the relative humidity. Such functional dependences can be found in [6, 9]. With the use of the func-
tions Weq = Weq(T, ϕ) we can determine the energy of binding of water with a material that can be high at a small
content of moisture in it. The quantity Weq is also necessary for formulation of boundary conditions.

For numerical calculations, in addition to the characteristics of the heat and mass transfer in wood, it is nec-
essary to know the characteristics of the heat and mass exchange between the wood and the environment (a drying
agent). The calculations are carried out on the assumption that the parameters of the drying agent (temperature, veloc-
ity, relative humidity) remain unchanged during the drying process or change only when passing from one stage to an-
other (the number of these stages is most often not larger than three) in accordance with a definite drying regime.
Therefore, unlike the internal properties of wood, the coefficients of heat and moisture exchange are determined in ad-
vance. They can be obtained from the functional and graphical data presented in [6, 9, 16].

Results of Calculations. The processes of heat and mass transfer in wood and its stressed-strained state were
calculated on the basis of the physical and mathematical models, numerical methods, algorithms, and programs, devel-
oped by us. A sample of width 0.15 m and thickness 0.075 m was considered. The heat and mass exchange between
all the surfaces of the sample and the environment was carried out by the conductive-convective mechanism. Let the

Fig. 1. Typical temperature distribution in the material at different instants of
time: a) 0.1 h; b) 0.3 h; c) 0.5 h; d) 1.4 h. T, oC; x, y, m.
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mass-transfer coefficient βW = 2.7⋅10−6 m ⁄ sec, the heat-transfer  coefficient α = 33 W ⁄ (m2⋅K), the initial humidity
W0 = 0.5 kg ⁄ kg, the equilibrium moisture content Weq = 0.03 kg ⁄ kg, the ambient temperature Tenv = 80oC, the initial
temperature of the material T0 = 20oC, the density of the dry pine ρ0 = 470 kg ⁄ m3, the coefficients of linear shrink-
age in the radial and tangential directions βr = 0.17 and βt = 0.28, respectively, and the Poisson coefficients ν12 = 0.4,
ν23 = 0.02, and ν13 = 0.03. Note that, with allowance made for the symmetry of the problem, the calculations were
performed for a fourth of the sample.

Figure 1 shows a typical temperature distribution in the material at the instants of time 0.1, 0.3, 0.6 and 1.4 h, and,
in Fig, 2, a typical moisture-content distribution in the material at the instants of time 6, 36, 80, and 160 h is given.
Figure 3 presents typical distributions of stresses in the material; it is evident from this figure that they are complex in
character. However, one regularity follows from the graphs: the maximum values of the quantities σxx, σyy, and σint are
attained near the surface of the material, and they have smaller values at all the other points. Figure 4 presents a graphic
pattern of possible crack formation and destruction of the material. The values of σint and σstr were determined at the
center of the upper surface of the material dried. It is seen from Fig. 4a that the intensity curve intersects the strength
curve. This means that the stresses in the material exceeded its strength, which gave rise to the formation of cracks on
the surface. In Fig. 4b, it is shown that the stresses developing in the material do not exceed its strength and, therefore,
it will dry without cracks and destruction. To provide this condition, we decreased, as compared to the data presented
in Fig. 4a, the thickness of the material to 0.015 m and the mass-transfer coefficient βW to 1⋅10−6 m ⁄ sec.

Conclusions. The mathematical model and the numerical calculation method proposed as well as the nonlinear
characteristics of the internal and external heat and mass transfer in colloidal capillary-porous materials and their
rheological properties allow one to simulate and investigate various processes of heat and mass transfer in these mate-

Fig. 2. Typical distribution of moisture content in the material at different in-
stants of time: a) 6 h; b) 36 h; c) 80 h; d) 160 h. W, kg ⁄ kg; x, y, m.
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rials and their stressed-strained state under natural and artificial technological conditions. The model proposed makes it
possible to calculate the interdependent, nonlinear processes arising in materials in the process of drying as a result of
their large deformations and shrinkages, the appearance of displacements in them, and the change the rheological and
heat-and-mass-transfer characteristics of the materials with change in their temperature and moisture content. The only

Fig. 3. Typical distribution of stresses in the material within 18 h after the be-
ginning of drying: a) σxx; b) σyy; c) σxy; d) σint. x, y, m; σxx, σyy, σxy, σint, Pa.

Fig. 4. Change in the intensity of the normal stresses (1) and in the strength
(2) at the center of the upper surface: a) width 0.15 m, thickness 0.075 m; b)
width 0.15 m, thickness 0.015 m. σint, σstr, Pa. 
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limitation of this model is that it cannot give an accurate experimental determination of the properties of the material
and the drying agent.

NOTATION

aW, diffusion coefficient, m2 ⁄ sec; aWij, components of the diffusion tensor, m2 ⁄ sec; [A], matrix presented in
[3]; [B], gradient matrix; c, specific heat capacity, J ⁄ (kg⋅K); d11, d12, d13, d22, d23, d33, d44, d55, d66, elements of the
matrix [D]; [D], [Ddiff], characteristic matrices of a material; E, modulus of elasticity, Pa; �F�, force vector from for-
mula (33) or load vector from formulas (25) and (30); G rigidity modulus, Pa; [G], matrix presented in [3]; g, deter-
minant of the metric tensor; gij, components of the metric tensor; [H], characteristic matrix of the material; j, moisture
flow, kg ⁄ (m2⋅sec); [J], Jacobi matrix; [Kt], tangential-rigidity matrix; [Knlin], matrix of large displacements; [Kσ], ma-
trix of initial stresses; [L], characteristic matrix of the material; [M], matrix presented in [3]; [N], shape-function ma-
trix; Qp, heat of evaporation of moisture from the material, J ⁄ kg; qsur, heat flow, W ⁄ m2; �r�, vector accounting for
the initial properties of the material; r1, r2, r3, components of the vector r; sij, components of the deviator stress ten-
sor, Pa; S, area, m2; T, temperature, K; �T�, temperature vector; t, time, sec; �u�; displacement vector; um, um, covari-
ant and contravariant components of the displacement vector, m; V, volume, m3; W, moisture content; kg ⁄ kg; �W�,
moisture-content vector; x, y, z, coordinates, m; α, heat-transfer coefficient, W ⁄ (m2⋅K); β, shrinkage coefficient; βW,
mass-transfer coefficient, m ⁄ sec; βr, βt, coefficients of linear shrinkage in the radial and tangential directions respec-
tively; Γjk

i , Christoffel symbols; δ, thermal-gradient coefficient, 1 ⁄ K; δj
i, Kronecker symbol; ε, phase-transition criterion;

εj
i, components of the deformation tensor; �ε�, deformation vector; �ε0�, humidity-deformation vector; λ, heat-conduc-

tivity coefficient, W ⁄ (m⋅K), or the Lame′ coefficient; λij, components of the heat-conductivity tensor, W ⁄ (m⋅K); μ,
Lame′ coefficient; ν, Poisson coefficient; ρ0, density of the dry material, kg ⁄ m3; σij, σxx, σyy, σxy, components of the
stress tensor, Pa; �σ�, stress vector; σint, intensity of normal stresses, Pa; σstr, strength, Pa; τ, integration variable, sec;
ϕ, relative humidity of air; χ, functional. Subscripts: dif, diffusion; i, j, k, l, m, α, β, tensor components; n, number
of iterations; r, radial; s, shift; T, heated; tr, transposition of matrix; t, tangential; int, intensity; lin, linear; nlin, non-
linear; new, new; el, elasticity; sur, surface; str, strength; eq, equilibrium; rel, relaxation; env, environment; m, middle;
old, old; p, phase; W, moist; 0, zero or initial; 1, 2, part of the mass flow in formula (18); 1, 2, 3, vector components
in formula (42) or spatial directions in formulas (43)–(45); ; , covariant derivative.
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